The success of 131I ablation in thyroid cancer patients is significantly reduced after a diagnostic activity of 40 MBq 131I

F. A. Verburg1,2,*; R. B. T. Verkooijen3,4,*; M. P. M. Stokkel3; J. W. van Isselt1

1Department of Nuclear Medicine, University Medical Center Utrecht; 2Department of Nuclear Medicine, University Hospital Würzburg; 3Division of Nuclear Medicine, Department of Radiology, Leiden University Medical Center; 4Department of Nuclear Medicine, Maxima Medical Centre

Keywords
Differentiated thyroid cancer, 131I ablation, stunning

Summary
Objective: Dosimetry studies have shown that activities of 131I as small as 10-20 MBq may cause a stunning effect. A result of this stunning effect may be a lower success rate of the ablative 131I therapy for differentiated thyroid carcinoma (DTC). The aim of this study was to determine whether pre-therapeutic uptake measurement with 40 MBq 131I causes a lower success rate of ablation. Design: retrospective chart review study. Patients, methods: In two hospitals the ablation protocols differed in one respect only: in the one hospital no diagnostic 131I was applied before ablation (group 1, $n = 48$), whereas in the other hospital a 24-h uptake-measurement with 40 MBq 131I was performed (group 2, $n = 51$). Included were all DTC patients without distant metastases who had undergone 131I ablation between July 2002 and December 2005, and who had returned for 131I follow-up. Successful ablation was defined as absence of pathological 131I uptake on diagnostic whole-body scintigraphy and undetectable thyroglobulin-levels under TSH stimulation. Results: Overall, ablation was successful in 31/48 patients (65%) in group 1 and in 17/51 patients (33%) in group 2 ($p = 0.002$). Multivariate analysis showed that pre-therapeutic uptake measurement using 40 MBq 131I was an independent determinant for success of ablation ($p = 0.002$). Conclusions: After applying a diagnostic activity of 40 MBq 131I before ablation, the success rate of ablation is severely reduced. Consequently, the routine application of 131I for diagnostic scintigraphy or uptake measurement prior to 131I ablation is best avoided.

Schlüsselwörter
Differenziertes Schilddrüsenkarzinom, 131I-Ablation, Stunning

Zusammenfassung
Ziel: Dosimetrische Studien haben gezeigt, dass selbst geringe Aktivitäten wie 10-20 MBq 131I dazu führen können, dass ein Stunning des Schilddrüsenrestgewebes auftritt. Als Folge könnte die Erfolgsquote der 131I-Ablation bei differenzierter Schilddrüsenkarzinom (DTC) deutlich erniedrigt sein. Das Ziel dieser Studie war es, festzustellen, ob prätherapeutische Uptake-Messung mit 40 MBq 131I eine geringere Erfolgsquote der Ablation verursacht.

Design: Retrospektive Studie anhand von Krankenakten. Patienten, Methoden: In zwei Krankenhäusern unterschieden sich die Ablationsprotokolle nur in einer Hinsicht: In einem Krankenhaus wurde kein diagnostischer Scan mit 131I vor Ablation durchgeführt (Gruppe 1, $n = 48$), im anderen Krankenhaus wurde hingegen ein 24-h-Uptake-Messung mit 40 MBq 131I gemacht (Gruppe 2, $n = 51$). In unserer Studie wurden alle Patienten mit DTC ohne Fernmetastasen eingeschlossen, die zwischen Juli 2002 und Dezember 2005 mittels einer 131I-Ablation behandelt wurden und für ein 131I-Follow-up erneut aufgenommen wurden. Erfolgreiche Ablation wurde definiert als Abwesenheit von pathologischen 131I-Speicherungen auf einer diagnostischen Ganzkörperzintigraphie und einer nicht nachweisbaren Thyroglobulinkonzentration unter TSH-Stimulation. Ergebnisse: Insgesamt war die Ablation erfolgreich in 31/48 Patienten (65%) in Gruppe 1 und in 17/51 Patienten (33%) in Gruppe 2 ($p = 0.002$). Multivariate Analysen zeigten, dass die prätherapeutische Uptake-Messung mit 40 MBq 131I ein unabhängiger Faktor für den Erfolg der Ablation war ($p = 0.002$).

Schlussfolgerungen: Durch die Gabe einer diagnostischen Aktivität von 40 MBq 131I vor Ablation wird die Erfolgsrate der Ablation stark reduziert. Folglich sollte die routinemäßige diagnostische 131I-Szintigraphie oder 131I-Uptake-Messung vor 131I-Ablation am besten vermieden werden.

* Both authors contributed equally.

Nuklearmedizin 4/2009
The therapy of choice in patients suffering from differentiated thyroid carcinoma (DTC) is (near) total thyroidectomy. To DTC patients except for those with a papillary carcinoma ≤ 1 cm in diameter it is recommended to subsequently administer a high activity of 131I, with the intent to ablate remnant thyroid tissue (5). There is still some discussion whether follicular thyroid carcinoma patients with a tumour diameter ≤ 1 cm should receive the 131I ablation treatment (29, 34).

Stunning

In many centers 131I ablation is preceded by pretherapeutic uptake measurement using a small activity of 131I (41, 42). A potential disadvantage of this is the presumed stunning effect to thyroid remnants (16, 35), i.e. a diminished uptake of ablative 131I activity after the application of a diagnostic 131I activity.

This stunning effect may be noticed either by a lower than expected 131I uptake on a post ablative scintigram, or as a higher failure rate (4). However, there is one difference: in the context of 131I ablation has not been established, with many authors only reporting a visual difference in 131I uptake by the thyroid remnant and only few offering quantitative evidence. Whereas not all authors agree that this phenomenon occurs (22, 25, 36), it has been demonstrated by others in malignant (12, 16, 17, 26, 30) and benign thyroid disease (14).

Dosimetry studies have shown that activities of 131I as small as 10–20 MBq may deliver a significant radiation dose to thyroid cells (16, 23), suggesting that the stunning effect may be due to direct radiation damage to thyrocytes. This is also supported by a study from Postgard et al. which showed that absorbed radiation doses as little as 3 Gy already reduced iodine transport by 50% (33). Evidence was presented of downregulation of the sodium iodine symporter expression in reaction to diagnostic activities (27), thus reducing the uptake of 131I (19).

At the University Medical Center Utrecht (group 1) and at the Leiden University Medical Center (group 2), two academic hospitals with geographically partially overlapping patient populations, comparable fixed activity ablation protocols were used since July 2002 (4). However, there is one difference:

- Group 1: no pre-therapeutic uptake measurement is performed.
- Group 2: a pre-ablative 24-h uptake measurement is performed (40 MBq 131I).

Our aim was to determine whether this pretherapeutic procedure with 40 MBq 131I causes a lower success rate of ablative 131I therapy in post-operative DTC patients.

Patients, material, methods

Study population

All DTC patients after thyroidectomy and without distant metastases (known before initial treatment or demonstrated by post-ablation scintigraphy or computed tomography / magnetic resonance imaging studies during initial treatment), who received 131I ablation treatment in one of our centres between July 2002 and December 2005, were included in a retrospective study. Further inclusion criteria were:

- ablation had been performed in accordance with the hospitals’ protocols;
- 6–12 months after ablation, patients had returned for diagnostic scintigraphy or additional treatment with 131I and for measurements of thyroglobulin (Tg) levels during TSH stimulation.

Pre-ablative 24-h 131I uptake

In group 1 the ablative activity was administered without prior diagnostic scintigraphy. In group 2 pre-ablative 24-h 131I uptake measurements were performed in order to assess the percentage of 131I taken up by the thyroid remnant using standard techniques: a capsule with 40 MBq 131I was given orally, followed by planar scintigraphy of the neck region 24 h later.

A standard of 40 MBq 131I, calibrated on the day of administration and measured in a neck phantom after 24 h, was used as a reference. The ablative 131I activity was administered on the day after the uptake measurement. Patients with a 131I uptake > 15% would have been referred to the surgical department for evaluation of additional surgical treatment, but this never occurred.

Fixed activity ablation protocol

A fixed activity ablation protocol was used in the University Medical Center Utrecht from January 1990 onward and at the Leiden University Medical Center from July 2002 onward. All patients underwent 131I ablation 4–6 weeks after (near) total thyroidectomy. Patients did not receive L-T4 medication between surgery and ablation. In both centres TSH-levels had to be equal to or greater than 30 mU/l before ablation could take place. Since the Netherlands is an iodine-sufficient country, in both centres patients had been instructed to keep a low-iodine diet for one week prior to ablation (8, 32).

An activity of 3700 MBq 131I was administered to patients without (known) metastases or 5550 MBq to patients with nodular involvement (detected pre- or peri-operatively). Node negative patients with extensive extrathyroidal tumour growth (n = 8) or Hurthle carcinomas (n = 6) also received 5550 MBq.

Follow-up, laboratory analyses

6–12 months after ablation, patients returned to their hospitals for follow-up. At the UMCU this was performed with rTSH stimulation using 370 MBq of 131I while at the LUMC levothyroxin was withdrawn for 4 weeks and 185 MBq of 131I was given. In both centres TSH-levels were checked before administration of 131I and had to be ≥ 30 mU/l. At this follow-up blood was drawn for the measurement of TSH-stimulated Tg-levels. Concurrently, scintigraphy with a large-field-of-view camera and high-energy collimators in both centres was performed, acquiring a scan of the entire body and separate planar acquisitions of the cervical region.

In group 1 the BRAHMS Dynotest Tg-pluS kit for measurement of Tg-levels and levels of Tg-antibodies was used (BRAHMS Diagnostica GmbH, Berlin, Germany). The lower detection limit of this kit was 0.2 μg/l. In group 2 the BRAHMS Dynotest Tg-S kit for measurement of Tg-levels and levels of Tg-antibodies was used (BRAHMS Diagnostica GmbH, Berlin, Germany), with a lower detection limit of 0.5 μg/l.

In the presence of antibodies, test results for Tg are not reliable (21, 39). As the assays used in both hospitals were IRMA assays, interference from antibodies against Tg generally would have resulted in underestimation of Tg-levels. Hence, eight patients with Tg test results below the cut-off level and with negative whole body scintigraphy were excluded from analysis because Tg antibodies were present in their serum.
Successful ablation, statistics

As our primary definition, ablation was considered successful if 6–12 months after the initial 131I therapy patients fulfilled all of the following criteria:

- no additional therapy of any kind for thyroid cancer between 131I ablation and first TSH-stimulated follow-up;
- TSH-stimulated levels below the detection limit of the assay;
- absence of pathologic 131I accumulations on whole-body scintigraphy, including absence of a visually discernable uptake focus in the thyroid bed as rated by the nuclear medicine physician at the time.

In literature further measures are advised if Tg-levels meet certain cut-off levels, usually 1 μg/l (28) or 2 μg/l (6). In order to study the clinical relevance of our findings we also analysed the overall success rate of ablation using both these cut-off levels combined with the other two criteria mentioned.

For statistical analysis we used SPSS version 12.0 for Windows (SPSS inc., Chicago, Illinois, USA). Statistical significance was defined as p < 0.05. The quantitative data (continuous parameters) were analysed using the Mann-Whitney U test. For categorical data the chi-squared test was used. Multivariate analysis was performed using binary logistic regression with a forward selection method based on likelihood ratios.

Results

Study population, cut-off

The 48 patients in group 1 received 131I ablation without a pre-ablative uptake measurement, whereas the 51 patients in group 2 first underwent a 24-h-131I-uptake measurement. Patient characteristics for both groups as well as tests for differences between the two groups are given in Table 1; none of these differences were statistically significant.

Tg-levels undetectable

Overall, ablation was successful in:

- 31/48 patients (65%) in group 1, and
- 17/51 patients (33%) in group 2.

The differences are statistically significant: p = 0.002. Table 2 displays the results of analyses of various subgroups. In most subgroups, there was a significant difference between group 1 and group 2 with regard to success of ablation. In some subgroups (e.g., men or patients with follicular thyroid carcinoma) for which the group size was insufficient to show a significant difference, the distribution of successful vs. unsuccessful ablation approximated that of the total group. Remarkable was the lack of a significant difference between group 1 and 2 for those patients who received 5550 MBq 131I.

In order to exclude tumour size affecting the results, we compared all node negative patients without extrathyroidal tumour invasion (T1–3N0M0 according to the 5th edition of the TNM system (38)) from group 1 (n = 30), as no uptake data were available, with only those patients (n = 18) from group 2 with an uptake of < 5%, reflecting a smaller thyroid remnant. In this analysis too group 1 did significantly better (p = 0.024). Also we compared 6 node negative patients with extrathyroidal tumour invasion from group 2 with an uptake percentage ≥ 28% with 11 patients who showed an uptake ≤ 22%, representing the highest and lowest uptake percentages, respectively. The difference between the two groups was not significant (p = 0.62).

For each group we also compared the results of those patients receiving 3700 MBq with those receiving 5550 MBq. This resulted in p = 0.047 for group 1, and p = 0.83 for group 2.

Multivariate analysis showed that having received a diagnostic 131I activity was the most significant factor influencing the chance of successful ablation (p = 0.002). The only other significant influence was having extrathyroidal tumour growth (p = 0.007).

Tg-levels <1 μg/l and <2 μg/l

Ablation was deemed successful by using as cut-off:

- Tg-levels <1 μg/l in
 - 35/48 patients (73%) in group 1, and
 - 26/51 patients (51%) in group 2.

- Tg-levels <2 μg/l in
 - 37/48 patients (77%) in group 1, and
 - 27/51 patients (53%) in group 2.

The differences are statistically significant:

\[
p = 0.025 (Tg <1 μg/l); p = 0.012 (Tg <2 μg/l).
\]

Discussion

Our study shows substantial differences in efficacy of 131I ablation, correlated with pre-therapeutic administration of 40 MBq 131I; the success rate of ablation in the group without pre-ablative scintigraphy is nearly twice that of the group who underwent pretherapeutic 131I uptake measurement.

Stunning remains controversial

Thyroid stunning remains a controversial issue. Jeevanram et al. (12) were the first to report a 25–75% decrease in uptake of therapeutics 131I activities after diagnostic scanning.
with 111–185 MBq 131I. Subsequently, several authors have reported various degrees of stunning of thyroid remnants after the administration of 131I; activities ranging from 74 MBq (16) to 111 MBq (26), 185 MBq (11, 17), and 370 MBq (30), all resulting in a less successful outcome than a control group that was scanned either with a much lower (37 MBq) 131I activity (26), with 124I (17, 30), or without any pre-therapeutic 131I before ablation (11).

In contrast, McDougall et al. (22) and Cholewinski et al. (2) reported no visually apparent stunning after diagnostic activities of 74 MBq and 185 MBq 131I, respectively. However, in neither of the latter studies the success rates of ablation were reported. Dam et al. (3) reported that even though visually apparent stunning was encountered in a part of their patient population, there were no differences in the success rate of ablation between those who did and those who did not show stunning on pre- or post-ablation scintigraphy. Sisson et al. even argued that visually apparent stunning may not be attributed to a diagnostic activity, but rather to early effects from the subsequent ablation activity (37). However, they did not compare to patients who had not received diagnostic 131I activities. Silverstein (36) reported no difference in ablation success rates between patients receiving 14.8 MBq of 123I or 74 MBq of 131I for pre-therapeutic uptake measurement.

The activity of 40 MBq 131I used in the study presented here is lower than those reported in the literature. Thus far there was only scant evidence as to whether or not stunning may be caused by such low 131I activities. Medvedec (23) performed a metaanalysis by fitting a regression model on results reported in four studies, and concluded that thyroid remnant stunning might already occur after administration of 131I activities as low as 10–20 MBq.

Limitations

Whether there is a time point at which a pre-therapeutic diagnostic activity does not influence the outcome of the following ablative activity is questionable and should be subject to further study; few data exist in literature and in this study success of ablation is already diminished even if the diagnostic activity is given only 24 h before the ablative dose.

The success of ablation treatment is influenced by the size of the thyroid remnant (18). Even though it is possible that there were some patients in group 1 with a considerably larger thyroid remnant, patients from group 2 did significantly worse even when only the smallest remnants were selected.

Follow-up

There are differences in the follow-up regime between group 1 and 2; both the method of stimulation (rhTSH vs. withdrawal) and the activity used (370 vs. 185 MBq). Neither of these differences should significantly influence the results: It was shown that the activity used for follow-up does not influence the results (31), and a large international trial established that results after rhTSH-stimulated follow-up are equivalent to those after levothyroxin withdrawal (20, 40).

From the results of this study it can be deducted that patients with a favourable prognosis suffer most from performing pre-therapeutic 131I uptake measurement: patients receiving 3700 MBq (who have low-risk tumours) show a difference between group 1 and group 2, whereas those receiving 5550 MBq (which are patients with higher risk tumours) do not show such a difference. In addition it turns out that in group 1 there is a large difference in success of ablation between those receiving 3700 and 5550 MBq 131I; this difference is absent in group 2.

Most subgroups showed significant differences between group 1 and group 2; in those subgroups that were too small to achieve a statistically significant difference (e.g., male patients, and patients with follicular carcinoma) we found differences between group 1 and group 2 proportional to those in the entire group.

In order to establish the clinical relevance we also analysed the differences in success rate using different cut-offs for Tg-levels that have been mentioned in literature. Even though the difference was less pronounced than with the stricter criterion of undetectable Tg-levels, we still found a considerable, statistically significant difference in success rate between group 1 and group 2. This indicates that at the first TSH-stimulated follow-up patients in group 2 considerably more often showed Tg-levels at such levels that additional diagnostic or therapeutic measures are indicated, and therefore poses a clinically relevant effect.

Other conditions being equal, it is highly likely that the lower success rate of ablation in group 2, which was seen especially in those with a favourable prognosis, was caused by stunning from the pre-therapeutic uptake measurement procedure with 40 MBq 131I. Consequently, in order to maximize the success rate of 131I ablation and minimize the number of required additional 131I therapies, 24-h uptake measurements or diagnostic scintigraphy using 131I is best avoided in patients with differentiated thyroid cancer.

Conclusion

Whether pre- ablative diagnostic scintigraphy should be performed is in discussion. Pre-ablation dosimetry, especially using 124I, may for instance allow a precise determination of the absorbed dose per MBq 131I (7, 13); which may in turn lead to a reduction in the activity of 131I.

Table 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Successful Ablation</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Group</td>
<td>31/48 (65%)</td>
<td>17/51 (33%)</td>
</tr>
<tr>
<td>Men</td>
<td>9/14 (64%)</td>
<td>5/15 (33%)</td>
</tr>
<tr>
<td>Women</td>
<td>22/34 (65%)</td>
<td>12/36 (33%)</td>
</tr>
<tr>
<td>Papillary Carcinoma</td>
<td>25/40 (63%)</td>
<td>11/39 (28%)</td>
</tr>
<tr>
<td>Follicular Carcinoma</td>
<td>6/8 (75%)</td>
<td>6/12 (50%)</td>
</tr>
<tr>
<td>No Extrathyroidal Invasion and Node Negative</td>
<td>23/30 (77%)</td>
<td>15/37 (41%)</td>
</tr>
<tr>
<td>Extrathyroidal Tumour Invasion and/or Node Positive</td>
<td>8/18 (44%)</td>
<td>2/13 (15%)</td>
</tr>
<tr>
<td>3700 MBq 131I</td>
<td>25/34 (74%)</td>
<td>11/32 (34%)</td>
</tr>
<tr>
<td>5550 MBq 131I</td>
<td>6/14 (43%)</td>
<td>6/19 (32%)</td>
</tr>
</tbody>
</table>
given, although individual dosimetry may become difficult in patients with a thyroid remnant mass < 1 g (9). Small amounts of 131I before 131I therapy may be useful in determining the largest activity that can be given without a risk for haemato logic toxicity (15).

- The local situation,
- legal requirements or
- frequent occurrence of large thyroid remnants

may also necessitate a pre-ablative uptake measurements. In such cases 131I scintigraphy may also provide a valuable alternative; to date no evidence of stunning of thyroid remnants after 131I has been reported (1, 10, 24).

Conflict of interest

The authors declare, that there is no conflict of interest.

References

